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Sweden 
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Abstract. A class of models is considered where a finite or infinite~quantum dynamical 
system in a stationary state is probed by sequences of observations acting on a specified 
finite subsystem. The whole set of such experiments is described by a time-ordejed (causal) 
and stationary quantum correlation kernel. It is shown that any such kemel can be decom- 
posed in a unique way into a convex combination of two kernels, here called the regular 
and singular components. A singular system has a strong deterministic property, the pre- 
dictability of the future from the knowledege of the past is limited only by the inevitable 
indeterminism of quantum measurements. Furthermore, in this case the full set of correla- 
tion functions of arbitrary time order, and hence the dynamical system itself, i s  determined 
by the causal kemel. Finite systems and infinite systems satisfying the KMS condition at 
finite temperature are of this type. In the regular case the dynamics contains a shift, there 
is a genuine asymptotic randomness and the dynamical system cannot be reconstructed in 
a unique way from the causal kernel. Non-trivial quantum Markov processes are shown to 
belong to this class. 

1. Introduction 

A fundamental problem in the theory of dynamical systems is whether a particular 
system is uniquely defined by the’observations we can make on it when these are 
restricted in some way. A prototype solution is the Kolmogorov construction where a 
stationaIy stochastic process is built from a set of compatible cylinder measures, each 
representing the observation of the outcomes in a finite number of instants [ 1,2]. In 
this way one obtains a dynamical system consisting of a group of automorphisms of a 
probability space and the construction is essentially unique. When the system is ergodic 
then it can be reconstructed from almost any sample path. A similar result in quantum 
theory is the Wightman reconstruction theorem of relativistic quantum field theory [3]. 

An analogue of these two problems concems quantum dynamical systems where 
only incomplete measurements axe made. The ,simplest form of this situation is that 
where the system is decomposed into -an observed system 9’ and a reservoir W. 9, 
interacts with,B and the measuring instruments, while B is not directly observed (section 
2). In this paper the nature of B is rather irrelevant while the system 9’ is defined by 
a subalgebra A y  of the operator algebra A of the total system 9+ B. From a reference 
state on A are defined a set of correlation kernels (section 3), the elements of which 
are expectation values of products of time translates of operators in AY with a finite 
number of time arguments. In this work only stationary states and kemels will be 
considered, and the singular quantum correlation kernel (QCK) is used to denote a 
compatible set of kemels of all orders. For a general scheme of this kind Accardi et, a1 
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[4] proved a non-cummutative version of the Kolmogorov theorem which gives a 
reconstructed dynamical system which is unique up to unitary equivalence. There is 
one feature of this construction which is less satisfactory than the classical version. In 
quantum theory the non-commutative nature of quantum measurements means that 
the time order of the operators are crucial. Physically accessible are only the elements 
of a QCK where the causal time order is respected (section 3), rather than the full set 
of arbitrary time order used in 141. 

The construction given in section 6 shows that given a stationary causal QCK, having 
a set of properties specified in section 5, there is always a minimal reconstruction 
which gives a W*-algebra in a Hilbert space, a strongly continuous group of unitary 
transformations representing the dynamics and a stationary state. However, in general 
this reconstruction is not unique up to unitary equivalence, which means that the 
correlations of arbitrary time order are not uniquely determined. It is shown in theorem 
1 of section 6 that the QCK can be decomposed in a unique way into a convex combina- 
tion of two QCKS, called here the regular and the singular part. A singular QCK gives 
a reconstructed system which is unique up to unitary equivalence. A regular QCK is 
characterized by a dynamics which contains a bilateral shift, and here the reconstruction 
always involves an arbitrary choice. The words regular and singular as used here are 
borrowed from the theory of stationary stochastic processes, there is no reference to 
the regularity of a dynamical system~used as a contrast to chaos. 

In the commutative case a stationary stochastic process can be decomposed in a 
unique way into a sum of two independent stationary processes, a deterministic or 
singular process and a purely indeterministic or regular process [5,6]. For a singular 
process the whole future can be predicted with certainty from a complete knowledge 
of the past using a linear predictor. For a regular process such a prediction of the 
infinitely distant future is restricted~to a trivial knowledge of the expectation value of 
the random variable. The results of section 6 form a non-commutative counterpart to 
this theory. However, there are significant differences between the commutative and 
non-commutative theories, and some of these are briefly discussed in section 8. In the 
quantum case the concept of predictability must be defmed with some care as the 
outcomes of observations on any quantum system have a non-deterministic property 
which is independent of the dynamics. In theorem 2 in section 6 a concept of quantum 
determinism is formulated which gives to a system with a singular QCK as much pre- 
dictability as quantum theory allows. This is in contrast with systems with a regular QCK, 
where the time evolution will irreversibly destroy some of the information contained in 
the past history, though not necessarily all of it. Here there is a true indeterminism 
coming from the dynamics. 

One may wonder if there are many physically realistic open quantum systems with 
the strong predictability property discussed in theorem 2. The answer is that it is more 
difficult to find quantum systems which are truly unpredictable. The QCK is singular if 
the dynamics of the system (more precisely of the covariant representation defmed in 
section 2) contains no shift. This  is^ a property which is shared by a large class of 
quantum models (section 4). First, there are typical h i t e  systems with an energy spec- 
trum bounded below. Second, it holds for infinite systems when the stationary reference 
state defining the QCK satisfies the KMS condition which is a characteristic of thermal 
equilibrium at a finite temperature. In order to obtain a regular QCK we need a reservoir 
capable of supplying a quantum counterpart of white noise, and this corresponds to 
having an infinite temperature (section 7). 

A special (zero temperature) case of singular systems is that where the stationary 
state is a ground state. This is the situation in relativistic QFT where the vacuum is the 
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invariant state used to define the Wightman functions (vacuum expectation values). 
These functions are certainly determined by a subset of values which have a partial 
causal order analogous to that of the QCKS discussed here but defined by the Mmkowski 
metric. However, it is known that they actually have the much stronger property of 
being uniquely determined by their values on so called Jost points ([3] section 2.4). 
These are n-tuples of space-time vectors where all difference arguments are spacelike 
vectors, such that the corresponding field operators commute or anticommute. 

A reconstruction theorem using the causal QCK only was proved by Belavkin [7], 
who obtained unicity up to unitary equivalence without a restriction to singular QCKS. 
This achieved by allowing an isometric rather than a unitary representation of the 
dynamics and a degenerate representation of AY which maps the unit operator on a 
projection. There is ‘no contradiction with the results of this paper, here we need a 
unitary dilation of the isometric dynamics. The construction in section 6 differs from 
that of [7] in other details, and it introduces less structure in order to keep the formalism 
as simple as possible. 

A special type of QCKS are those belonging to quantum Markov processes. These 
are generated by semigroups of completely positive maps with a normal stationary state 
in the way described in (7.1). This kmd of process has a true asymptotic randomness 
when these maps are not unitary, and in this non-trivial case the QCK will be regilar 
(theorem 3 of section 7). It tuns  out that the QCK is ergodic if and only if the stationary 
state is extremal. 

2. Quantum dynamical systems 

Consider a finite quantum system 9’ described by a W*-algebra Ae=,B(HY), where 
H9 is a separable Hilbert space. This system is open, i.e. it is part of a larger, perhaps 
infinite, system. This is represented by AY being a subalgebra of the algebra A rep- 
resenting the whole system. When the whole system is finite A can be chosen to be a 
W*-algebra. Recall that the GNS construction associates with any statep a *-represen- 
tation z ( A )  in a Hilbert space K and a cyclic vector OeK such that K = [ n ( A ) a ]  
(=closed linear span) and 

p ( X )  = (a, n ( X ) a ) V X e A  

( [ 8 ]  Section~2.3.3). The representation z is normal if and only if p.is a normal state, 
and then z ( A )  is a W*-algebra as well. This construction is unique u p t o  u n i t a j  ’ 
equivalence. When the normal state p has central support Q then the GNS representation 
is faithful (it is a W*-isomorphism, a relation denoted-below). For AY=B(HY)  the 
normal representations are unitarily equivalent to an amplification ([9] section 2.7) 

z ( X ) - X @ d .  

The A y  can be identified with one factor in a tensor product ( [9 ]  section 1.22) 
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In this setting the dynamics is given by a o-weakly continuous group T(t) (where TER 
or E )  of W*-automorphisms of A.  Assume that the state p is stationary: p o T ( t ) = p .  
The stationarity of the state p means that in the GNS representation the dynamics is 
given by a strongly continuous group of unitary operators W(t) in K defined by 

W(t)a(X)Q = a(T(- t ) [X])Q V X E A  
which leaves R invariant: W(t)Q=Q. The triple {n(A) ,  W(t), Q} is called a covariant 
representation of {A ,  T(t), p }  ([SI chapter 2.7). 

For infinite systems the standard formalism uses a quasi-local C*-algebra, call it B, 
and a strongly continuous representation of R in the group of C*-automorphisms of 
B. For any invariant state p on B there is again a GNS construction where the dynamics 
is given by a strongly continuous group of unitary operators. The W*-algebra of interest 
is A= n(B)" (' denotes the commutant, " the bicommutant). A y  is now one of the local 
algebras representing finite parts of the system. If p is a locally normal state then K 
restricted to As is normal. When Ay=B(Hy)  then the local normality means that 
there is again an identification (2.1) for some choice of A*. 

Inthe following we will understand by a quantum dynamical system any collection 
of objects { A Y ,  A ,  T(R), p }  of the structure described above, with p stationary. This 
notation differs from the standard one only by the explicit introduction of 9 in order 
to 'have an open system formal ism.^ It will be applied to a covariant representation 
{ A y ,  A ,  W(R), a) where A is a W*-algebra acting in K and where we can use the 
identification (2.1). This is the kind ofsystem which is actually reconstructedin section 
6. The p r e k  W* will be left out almost everywhere. 

For a finite system the spectrum of the Hamiltonian is by definition bounded below 
and has a finite or infinite number of bound states, and (above a certain threshold) a 
continuous spectrum of unbound states. The Hamiltonian generates a strongly continu- 
ous group of unitary operators U(t)  in the Hilbert space H of  the system and hence 
defines a group of automorphisms 

T( t ) [X]  = U(t)"XU( t )  E AVXeA. 
The dynamics W(t) in the covariant representation is related to U(t) in the following 
way: when U ( t ) € A  we can write 

w f ) = ~ ( U ( t ) ) w )  

V(t)Q=n( U(-t))Q. 
where the group of unitary operators V(t)En(A)' is uniquely defined by 

Consider the simplest case A = B ( H ) .  There can be a stationary normal state only if 
the spectrum of U(t)  has a discrete part. Then the support of p is a projection P 
belonging to a discrete part of the spectral resolution. Let k index a CON set in PH 
diagonalizing p and U(t)  simultaneously 

wherepk>O, &pk= 1, and introduce 

Q = C ,f&lk)@ I k) E H@ PH= K 
k 

a ( X )  = X @ P € B ( K )  
W(t) = U(f)@ U(-t)P€B(K). 
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Then { s ( A ) ,  W(t), Q} is a covariant representation with C2 as a W(t)-invariant vector. 
The spectrum of W(t) differs from that of U(t) only by a discrete component and the 
continuum part is that of U(+ 

We now turn to the introduction of ergodic properties for these dynamical systems. 
First, there is a condition that the dynamics of Y+92 mixes the system well, allowing 
us to probe the whole system by interacting with 5”. It is evident from the definition 
of the QCK that we cannot hope to get enough information to recover A unless the 
system is minimal in the sense  that 

~ ~ 

{T(R) [Ay] }”=A.  (2.3) 
This condition is part of the definition of a generalized K-flow as introduced by Emch 
[IO]. It is clear how (2.3) is to be interpreted in a covariant representation. It tums out 
that in the construction of section 6 (2.3) is autoinatically fulfilled by the reconstructed 
system. Let B{&, T(R)} be the algebra of polynomials in the operators in the set 
T(R)[A,], then the weak closure of B is the LHS of (2.3), i.e. (2.3) is equivalent to 

A = [BIw. (2.4) 

s ( A )  = [@)Iw. 
The same relation then holds for any normal~representation as 

If 7~ is a normal GNS representation with cyclic vector Q, then the set KO= r(l?)L2 is 
dense in the GNS Hilbert space: 

K = [ n ( A ) Q ] = [ s ( B ) Q ] .  
Consider the decomposition of dynamical systems satisfying (2.3) in a way which 

commutes with the action of the dynamics and the observations. Introduce the following 
W*-algebra in the covariant representation 

If (2.3) holds we can replace A by s ( A y ) .  Any projector Q E Mreduces the covariant 
representation to one acting in the Hilbert space QK. The system is indecomposable if 
and only if 

M = @ . %  (2.6) 
holds, which corresponds to the fact that p is an extrema1 invariant (ergodic) state 
(we say that Q is trivial). There exist several different notions of ergodicity for non- 
commutative systes. The following definition is consistent with the convex structure of 
the QCKS introduced below. 

Definition I .  The dynamical system {Ay ,  A, T(t), p }  is said to be ergodic if both the 
minimality condition (2.3) and the indecomposablility condition ‘(2.6) hold. 

M =  { A  w(q},=A,nw(R): (2.5) 

*> 

3. Quanhm correlation kernels 

The non-commutative nature of the observations performed on a quantum system is 
most clearly displayed in the operational approach [I 1, 121. By assumption the opera- 
tions act on Y only. For AY=B(Hy)  they q e  described by normal completely positive 
(CP) maps. They form a convex cone generated by the maps 

{ X H V + X V ; X € A ,  V€&, IIVlI<l) 



7198 G Lindblad 

(which are the extrema1 rays) by convex combination. Through polarization a set of 
linear maps is obtained which is linearly generated by elements 

X W V X W  

where V, WE&. In [I21 it is outlined how such maps are related to the action of a 
large class of generalized measurements (called instrwnenfs there) on the subsystem 9 
and to the corresponding probabilities. When a sequence of different observations are 
made on the system at a succession of instants 

t = ( t , < t z <  . . . a") 
the operations and the intrinsic dynamics are composed in a time-ordered causal fashion 
as non-commuting CP maps on the algebra. The relevant probabilities are expressed in 
terms of a time-ordered quantum correlation kemal (QCK). The following notation is 
used 

( X , t ) = { ( X x e A , ,  fk ) }? .  (3.1) 

R(X,  tl y, Q = p ( W ,  t)'V(Y, t ) )  

V(x,~)=~(~")[x~~(~"-1)[x.-II~~. T(tl)[XlI 

The QCK is defined as a sequilinear form on the set of all such time-ordered sequences 

(3.2) 

where p is the state of the system Y+9 at t =O.  It will be assumed stationary in the 
following and the QCK inherits an obvious stationarity property (5.4). A point of 
notation: R restricted to n-component vectors ( X ,  t )  is a QCK Rn of order n, and R is then 
a family {R,; n =  1,2,  . . . } of compatible kernels (satisfying condition (2) of section 5) 
for which the notation QCK is used. There is an evident positive definiteness property 
of the QCK: 

c;l*aIR(xk, tkixl, t , o o  v v ,  t )k ,?bk€@) .  (3.3) 
k.1 

To this notion of positivity corresponds a natural convex structure and partial order 
in the set of all stationary QCKS over a given algebra ASP. There is an associated notion 
of an ergodic QCK (see (7) of section 5). 

By definition the probabilities of any sequence of outcomes of any sequence of 
observations are given by diagonal elements R ( X ,  t lX ,  t )  of the QCK. Note that the 
nature of the observations and the space of outcomes at different instants can be quite 
different and this generality is implicit in the formalism. In fact, the QCK defines the 
probability distributions for all possible, in general mutually incompatible, sequences 
of instruments acting on 9, thus giving a complete expression for the concept of 
complementarity. The QCK also describes the interaction of Y with any external system, 
like a measuring apparatus describedby its own quantum dynamics and state, combined 
with observations performed on the apparatus. Here the dynamics and the initial state 
of 9 + 9 is given, everything else arbitrary. This statement'follows from the expansion 
of such an interaction in standard time-dependent perturbation theory. Up to a nor- 
malization, any non-negative form (3.3), or any limit of such expressions, can be realized 
as the probability an outcome of a general measurement of this type. Note that the 
arguments in the QCK are not necessarily observables but elements of operations on 
the algebra of observables. For A,=B(H,) they are in the algebra, though not self- 
adjoint in general. 
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On the time ordered sequences (3.1) the following composition operation is intro- 

( Y ,  U )  * (X, t) = ( Y * X ,  U* f) (3.4) 

v((y,u)*(x,t))=v(y,u)v(x,t). (3.5) 

duced. For each pair (X, f), ( Y ,  U) such that u>t (i.e. uk3t,Vk, I ) ,  write 

where Y * X = ( X 1 , .  . . , X i ,  Y I ,  . . . , Y.) etc. Then, from (3.2) 

4. Singular and regular dynamics 

An outline of some well known facts is given here [5,6, 131. Let U(t) be a strongly 
continuous group of nnitaries in H. Let there be a subspace H+ such that 

U(t)H+ G H+VtER+ 

and introduce the subspace 

U U(t )H+sHlEH 
rER 

Then, by definition, {U( t ) ;  t E R }  i s ~ a  bilateral shift on HI, while the semigroup 
{U(t)lH+; &R+}  is^ a unilateral shift consisting of isometric (non-unitary) trans- 
formations. Here the dimensions of H+ , HI and HI OH+ are the same, either zero or 
infinite. . .  

One can always decompose H into U(t)-invariant subspaces H= H,QH2, such that 
U(t)lHI is a shift (the regular part) and U(t)lHz has no shift component (the singular 
part), but this decomposition is not unique. The part U(t)[H2 has the property that for 
any subspace H3&H2 it holds that 

{ U(t)H3_cH3Vts R,} - { U(t)H3 E H3VteiW} 

and a continuous group of unitaries with this property can contain no shift. This 
property is related to the spectrum of U(t)  in the folllowing way. Write 

m 
U(t)= P(do) exp(-iot). sm 

Forevery Q~Hthereisaprobabilitymeasnreon Rgiven by(@lP(dw)l4). Let (r(4,o) 
denote the derivative of the absolutely continuous part of the measure. Then the follow- 
ing result holds. .. 

LRmma 1. U(r) is a singular if and only if for every @EH 

This is a version of a well known theorem of Kolmogorov and Krein ([5] section 111.2, 
[6] chapter 5.8, [14] Appendix B.12 or [15] section 10.14). In fact, if U(& H+ satisfy 
(4.1) then there is a vectoi&H such that 

H+ E [ U( R+)@ 1 #HI E [ U( R)4 I. 
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But HI -Lz(IW; ~ ( 4 , .  )) so this is equivalent to the statement that the family of 
functions {exp(iwt); t2O) is not dense in I.&; ~ ( 4 , .  )). By the mentioned theorem 
the family is total precisely when (4.2) holds. It holds for instance if the continuum 

0 

The dynamics relevant for the application of these concepts to the reconstruction 
theorem is that of the covariant representation. It follows from (2.2) and the lines 
following it and (4.2) that this dynamics will be singular for a finite quantum system. 
The same conclusion can be drawn for the dynamics of an G t e  system when the 
reference state satisfies the KMS condition for a finite temperature. Let a, be the dynam- 
ical group of automorphisms of the quasilocal algebra B. For any tvo observables 
X, Y E B  the functions 

part of the spectrum does not cover the whole real line. 

{fi(O,h(t)} = { d a t ( X )  y), ~(YadX)) l  
are the boundary values of a functionf(z) holomorphic in the strip p <Im z<O, i.e. it 
holds thatfi(t) =f( t ) ,h ( t )  = f ( t -  ip) ([SI chapter 5.3). In the covariant representation 
there is a strongly continuous group W(t) of unitaries such that for every pair 
4, y d , t h e  function f(t) = (VI W(t)l@) can be continued to a function holomorphic 
in the strip and continuous on the boundary. From the holomorphy and the edge of 
the wedge theorem ([SI proposition 5.3.6) it follows immediately that if 4, V E K  are 
such that f ( t )  = O W  > 0, then Az) = 0 in  an open set in the strip and hence it vanishes 
on the strip and on its boundary, i.e.f(t) =O for all real t .  Now let the subspace K+ of 
K be mapped into itself under positive time translations: 

W(R+)K+ EK+ 

and choose $ E K + ,  y l K + .  Then it is found from the present argument that K+ is 
invariant also under negative time translations, so that W(t) is singular. It is also 
possible to use lemma 1 directly to prove this point, compare appendix A.5 of [16]. In 
this argument it is the holomorphy which is important rather than the KMS boundary 
condition, hence there is a larger set of states having the desired properties. The set of 
ground states where the holomorphy extends to a half-plane corresponding to p = 00 
can be considered as a limiting form of KMS states ([SI chapter 5.3.). 

For the uniqueness of the reconstruction in section 6 the following consequence of 
the singular property of the dynamics is essential. Consider a covariant representation 
of the type discussed in section 2 and write T ( t ) [ X ]  = W(t)+XW(t). The operator V(X, f )  
can be defined as in (3.2) if in that formula &EA* is replaced by the operator 
z ( X k ) ~ z ( A Y ) .  Then, with the notation B,t=t-s 

T(-s)[V(X, t ) ] =  V(X,  est). 

Y(X, t )  = V(X, t)Q. 

W ( ~ ) Y ( X ,  t ) = ~ ( x ,  est) .  

K- =pyx, t )  ; XXEALP, tk  GO, Vk] C K  

Introduce the following vectors of the CNS Hilbert space K 

From the invariance of follows that 

The set of such vectors with non-positive time parameters span a Hilbert subspace 

(4.3) 
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which is obviously mapped into itself by W(t) for t 2 0 ,  hence by the singular property 
this holds for all t. From the definition it also follows that E(&) maps K- into itself. 
In fact, consider elements (X, f) with t<O. Using (3.4) and (3.5) it is then evident that 

E(Y)~(x,t)=1y((Y,o)*(x,  t ) ) S K _  

and linear combination and closure gives the conclusion. Again let B~ be the algebra of 
polynomials in the variables 

{n(Y, t )= W(t)'z(Y)W(t); t € R } .  

Then it follows from the inclusion relations above that B maps K- into itself, and the 
same holds for the closure (2.4). From this result the following lemma is an immediate 
consequence. 

Lemma 2. If W(t) is singular and if [AQ]=K, then Q is cyclic already for the time- 
ordered products V(X, t )  with non-positive time parameters ( t < O ) ,  in other words 
K- = K. 

The discussion in this section can be rephrased to hold for a discrete time parameter. 
In this case there is a spectral resolution in [ 0 , 2 ~ )  and (4.2) is replaced by 

Jaz* dw 11, u(4, @)I = m. 

Note that when a continuous time parameter is discretized, the singular property of 
the dynamics is'not preserved in general. 

5. Properties of the QCK 

The time-ordered QCK defined in section 3 satisfies a number of properties which are 
summarized here. Most of them are immediate consequences of the definitions. The 
singular property (5.6) is the one which is essential for the sufficiency of the time ordered 
QCK for a unique reconstruction as described in section 6. This point is where the 
present scheme differs from those of [4,7]. First, a convenient equivalence relation is 
introduced. Using the definition (3.1) we write 

{ (X, t) N (X', f ) }  (R(X, tl Y, U) = R ( X ,  t'l Y, U)V( Y, U)}. 
The properties of the QCK are given by (1)-(8) below. 

(1) Positiuity. R(X, tl Y, U) is linear in the Yk?&, conjugate linear in the &€AY 
and satisfies the positivity property (3.3). This implies the symmetry R(X, tl Y, U)*= 
R(Y,  ulX, t). Another straightforward consequence is the following Schwarz type 
inequality. For any set of time-ordered sequences {(X, t)*, &GO} and any YEAY it 
holds that 

(5.1) ca.ww, 0) G,, M Y ,  o)*(x,, ti)) < II Y I I ~ C  a m ( x k , t k i x l ,  tr). 
kJ k.1 

( 2 )  Compatibility. From the fact that T(t)[I]=Q follows: If (X, t) can be trans- 
formed into (X', t') through the addition and deletion of dummy arguments of the form 
( Q ,  t,) then ( X ,  t)=(X',  t'). 
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(3) Normalization. From the normalization of the reference state follows that, with 
thenotation(l)=(Q,Q,.  . . , a )  

R(1, tl1, U)= 1. (5.2) 
(4) Multiplicafivity. From the fact that T(0) is the identity map follows: 
(a) if (X ,  t )  is such that tm=tm+, for some m, and if X' is obtained from X by the 

replacement 

(X,, xm+ I )  ++ (Xh, Xh+ I )  = (Xm+ IX,, Q) 

then (X,  t )  'CI (X', t). 
(b) For all (X, t) ,  (Y, U) with t, uSO, and all ZEAS. it holds that 

R((Z, O)*(X,  t)lY,~)=R(X,tl(p, O)*(Y,u)). (5.3) 
(5) Stationarity. From the stationarity of the reference state follows: for all 

(X, f), (Y, U) and all real s 

R(X, 0,tlY, 0,u)=R(X,tlY,u). (5.4) 
(6 )  Continuity. From the (local) normality of the reference state follows that each 

of the maps Y k w R ( X ,  t ;  Y, U) is a-strongly continuous. From the continuity of the 
dynamics follows that for all (X, t),  (Y, U) 

(5.5) lim R(X, t I Y, 0,~) =R(X,  t I Y, U ) .  
3-0 

(7) Ergodicity. We call R ergodic if it is an extrema1 element in the convex set 
defined by (1)-(6) for a given algebra A9. The QCK of an ergodic dynamical system is 
ergodic in this sense. This is proved under (e) of section 6. 

(8) Singularity and regularity. If the dynamics of the covariant representation asso- 
ciated with p is singular, then by lemma 2 it holds that for every (Y, U) the infimum 
over the finite sets { ( X ,  t ) r ;  &,GO}: 

inf{R(Y, 111 Y, 4+CR(Xk, ~1x1, ti) ' 
k,/ 

- R(Xr, & I  Y, U) - R(Y, U IXi, ti)} = 0. (5.6) 
k / 

We call R singular if (5.6) holds. On the other hand we call R regular if for every 
singular QCK RI the inequalitypR,<R, (p>O),  impliesp=O. Instead of singular and 
regular we could use the words deterministic and non-deterministic as will be clear from 
the developments in section 6. 

The properties given above are not independent or minimal. From (5.1) follows: 
for all  YEA^ it holds that 

{ ( X ,  t )  =(X, t'); t f SO} ==. { (Y,  O)*(X, t ) - (  Y, 0) * (X', t')}. 

(x, t )  E (n, 0) * (x, t )  

(5.7) 

(5.8) 
then the compatibility conditions follow from this and (5.7). In the same way, from 
the following relation, for all Y , ,  Y z d r p ,  all (X,  t )  with tGO: 

If it is assumed that for all ( X ,  t )  with t < O  

( Y , ,  0) * ( (Yr,  0) * ( X ,  t ) )  -(Y1 Y2,O) * (X ,  0 
and (5.8) the multiplicativity property (4a) follows. 

(5.9) 
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6. Reconstruction and determinism 

In this section we consider the convex set of time-ordered QCKS over a k e d  algebra 
A y ,  each one having the properties specified in section 5. 

Theorem 1. The QCK R can be decomposed in a unique way into a convex combination 
of a singular and a regular QCK. From the singular part we can reconstruct a dynamical 
system which is unique up to unitary equivalence. If a sin-dar QCK derives from a 
covariant representation which is minimal in the sense of (2.3), then the reconstructed 
system is equivalent to this representation. The reconstruction starting from a regular 
QCK always involves an arbitrariness which implies that the full set of correlations of 
arbitrary time order is not uniquely determined. ~ 

The proof involves some steps which are standard (compare theorem 3.7 of [3], chapter 
1 of [17]), but they are sketched here for completeness. Steps (c) and ( f )  are the 
important points which allow us to go further than [4,7]. 

(a) Hilbert space. On the linear span of formal elements KO= {cb(X, z)} a pre- 
Hilbert structure is introduced through 

~ 

( W X ,  t) I @( Y, 4) = R(X, t I Y, 4. 

N={&&;  (@I$>=O) 

The null space is 

and the Hilbert space Kis the completion of the set of equivalence classes of & modulo 
N :  K= [&/NI. We use the following notation for the elements of Ko/N 

Y ( X ,  t )  =@(X, t )  mod N. 

(b) Dynamics. A map WO($ of KO into itself is defined by 

W , ( ~ ) ~ X ,  t )  = q x ,  est). 

From (5.4) follows that it maps the null space Ninto itself, hence the followingdefition 
of the dynamics makes sense on Ko/N: 

W(s)Y(X,  t )=Y(X,B, t ) .  

Furthermore, Wis isometric on Ko/N and can be continued to an isometry on K. It is 
evident that it forms a group of transformations, hence it is a group of unitary operators 
in K. From (5.5) follows that 

lim II WS)W- vll =Ovv&dN 
3-0 

From this and the isometric property it then follows that the same holds for all y d .  
The subspace K- is dehed by (4.3) and K-, by 

K-,=-n W(S)K-GK-. 
SER 

From (a) follows that 

The subspace K-, is invariant under W(R), and in KOK-, the dynamics acts as a 
bilateral shift. 
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(c) Representation of A y .  First consider the singular case. Then (5.6) implies that 
K=K-. For each (X, t ) ,  t<O,  YE&, define %(Y) through 

no(Y)Q(X, t )=Q(Y*X, O * t ) .  

il~o(Y)'WX,~)+NII<II YII. IlQ(Xt)ll. 
From (5.1) follows that no( Y )  maps N into itself and that 

Hence no( Y )  extends by continuity to an operator n( Y )  in Kwith norm lln(Y) /I Q II YII. 
From (5.9) follows that n(X)n( Y )  = s ( X Y ) ,  from (5.3) that n( Y)+= n( Y'), and from 
(5.8) that +(I) = 8 .  From the u-strong continuity of the QCK in the operator arguments 
follows that s is a normal representation. With A9=B(Hy)  it is unitarily equivalent 
to one of the form n(X)=X@Q.  Now let there be a regular part in the QCK, i.e. the 
infimum in (5.6) is not identically zero. Together with the stationarity this means that 
K# K- , but there is still a representation n-(A9) in K- as described above. In general 
n-(Ay)  does not leave K-, invariant. As K+=K@K- is always of infinite dimension 
(if non-zero), we can introduce a normal non-degenerate represenation ~+(A.w) in this 
subspace which is again of the simple form (2.1). Thus there is a representation n&) 
on K which is the direct sum of n- and n,. 

(d) W*-algebra. Using W(t), n(A9) in (c), define 

Q=Y(l,  t )  

n ( X ,  t)= W(t)'n(X)W(t) 

+(X, t )  = X(X, , ,  t") . . . n(X2, t , ) f f (Xl ,  tl).  

It follows from property (2) in section 5 that Q is a well-defined element of K, and 
from (5.2) that it has unit norm. From the definition it also follows that Q is invariant 
under W(t), hence B E L , ,  and that 

Y(X, t )=n(X,  t)Q. 

W(t)Y(X, t ) E K  

Furthermore, for all sets { ( X ,  t ) ,  n, t ,<t}  it holds that 

and from this follows by recursion that the time ordered products Y(X, t )  are deter- 
mined by W(R) and n-(A9) and are independent of the choice of E+(&). The same 
then holds for the time-ordered QCK. However, the choice of n+(Ap)  will enter into 
the W*-algebra of the system as defined in the fashion of (2.3): 

A = { a ( A 9 ,  t) ; t~R}". 

Here n(A9) is a subalgebra of the form described above and there is a unitary equiva- 
lence A-Ay@Aa for some choice of AB.  

(e) Ergodicity. First consider the case where R is singular and let there be a QCK R I  
withpRl<R for some O<p<l. By a standard argument (theorem 1.12 of [17]) there 
is a bounded map betwen the Hilbert spaces V:K-+Kl satisfying V*V<p-'Q and 

Yl(X, t ) =  VY(X ,  t )  

RI(X. tl Y, U )  = (Y(X, t)i V'VY(Y, U ) ) .  

From (5.3) and (5.4) follows that Q=v'Vsatisfies, for all { X E A ~ ,  t s R }  

[Q, W, 91 = [Q, WO1 = O  
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i.e. Q belongs to the algebra (2.5) and the condition (2.6) is broken if Q is non-trivial. 
Conversely, if the QCK R is ergodic, then Q is trivial and (2.6) holds. Now consider the 
case where R is not singular. There is then a non-negative operator Q in K which 
satisfies [Q, W(t)]=O. QK-cK-, and 

IQ, ~ - ( & ) l l ~ = O .  
By Hilbert space duality QK+=K+. It is actually enough to consider the case where Q 
is a projection. On the spaces Q(KOKm) and (1 - Q)(K@Km) there are defined bilateral 
shifts, hence it follows that the subspaces QK+ and (I - Q)K+ are either null or of 
infinite dimenson. It is then always possible to define z+(&) such that 

[Q, T+(A~.)III(,=O 

and consequently Q is in (2.5). Thus the decomposition has been extended from the 
causal QCK to a subset of the arbitrary choices of the reconstructed system to recover 
the situation obtained in the singular case. Note that if QIK- is trivial then so is Q[K+. 
Hence, if the causal QCK is indecomposable then so is the whole dynamical system, and 
this proves (7) of section 5 .  

(f) Regulur and singular parrs. Define a Hilbert subspace and the corresponding 
projector 

, ,  K,= P,K= [A(K@K-,)] 

and the complementary subspace K,=K@K,=P,K. Due to the fact that KOK-, is 
invariant under W(R) it holds that K,is the smallest subspace of Kcontaining KOK-, 
which is left invariant by both z(&) and W(R), and hence by the algebra generated 
by these two sets (this is the commutant of (2.5)). By duality in Hilbert space, & is 
the largest subspace of K-, with this invariance. But 

z(A.-)I~--m = n-(&)I~-cc 
hence K, (and K,) is uniquely defined by W(R) and L(&) and independent of the 
choice of z+(A9). The same holds for the projectors P,, P,. Furthermore, they are in 
the set (2.5) and define a unique decomposition of the QCK into a convex combination 

Ip= (!21Ps!2)Rs+ (nlP,Q)R, 

where, for  instance^ 

<QlPF)R,(X, 4 y, 4 = ( W X ,  t)lPSVY, 4). 
(g) Unicity. In the singular case (P9=Q) any two constructions (indexed 1,2) based 

on the given QCK are unitarily equivalent. In fact, the relation 

V Y , ( X ,  t)=Y,(X, t )  

defines an isometric bijection V:K,+K, between the two Hilbert spaces as is evident 
from the identity of the QCKS and the cyclic property of the construction. The same 
conclusion holds for any covariant representation satisfying (2.3) and having the given 
singular QCK. When there is non-trivial regular part, then the arbitrariness in defining 
the representation z+(&) means that there is for every unitary V in K+ a 
transformation 

{.-(XI, x + ( X ) ,  W(t)l++{z-(X), V+z+(X)V, W(t ) }  
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which leaves invariant the time-ordered QCK but it is not a unitary equivalence for the 
dynamical system unless V and W(t) commute. On the other hand, the reconstruction 
theorem of [4] shows that the QCK of arbitrary time order gives a reconstruction 
which is unique up to unitary equivalence. Thus, when there is a regular part we can 
find many continuations from the QCK to the full set of correlations by choosing 
V arbitrarily. 0 

From the proof of the point (c) above it follows that singular systems have a 
deterministic property (predictability) which is analogous to that of deterministic sta- 
tionary stochastic processes, with due consideration of the non-determinism which is 
inherent in quantum theory. 

Theorem 2. Let there be given a dynamical system with a singular QCK. For any f > O  
and any @Hp there is then a limit of sequences of linear combinations of elements 
{ (X,  t ) k ;  &so} such that the limit represents the pure state 4 on the observables of 9 
at time t 

lim c a:alR((r, t)  *(x, t ) t l ( ~ ,  t) *(x, 03 = (41 Y + Y ~ ) ,  
k.1 

In other words, the preparation of a suitable state of the system at t=O by operations 
acting on 9 during (-CO, 01 allows us to make an as well determined prediction of the 
outcome of any given observation of 9 at a given time t > O  as the quantum theory of 
closed systems allows. Conversely, if this predictability holds for any choice of @HIP 
and for all te[O, r ] ,  some r > 0, then the QCK must be singular. 

The proof of the first part follows directly if we observe that there is a non-trivial 
subspace 

n(l4><4I)KCK 

and that any normalized vector Y in it will give the expectation (&a$) for 
~ ( X ) , X E A S = .  Now W(-t)PeKwill give this expectation for %(Ay,  t )  and as K=K- 
the first statement follows. For the converse statement we note that the predictability 
holds for time t if and only if 

44><4I) WOK-  = W O K - .  

This holds for all 4 E H y  if and only if 

n(Ay)W(t)K-= W(t)K- 

which is equivalent to 

%(Ay ,  t ) K - = K .  
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If this holds for all &[O, r],'then we h d  from (a) and (b) that W(r)+K-=K-,~and 
consequently that 

K=lim W(t)+K-=K- 
'3- 

which means that the QCK is singular. 

7. Markov processes 

It will now be shown that a Markov quantum stochastic process (QSP), as defined in a 
standard way, necessarily has a shift in the dynamics of the reconstructed system unless 
the dynamics on A y  is an automorphism group, which corresponds to the dynamics 
of a closed finite system. Consequently, for a Markov process describing a genuine open 
system dynamics, the time-ordered QCK does not s f i c e  for a unique reconstruction in 
the sense used here. There is a considerable number of papers on the reconstruction 
(dilation) problem in the Markov case [17-231. There the reader can find many aspects 
on the dilation problem which have been left out here. 

The generally accepted definition of a Markov process in the non-commutative case 
starts from a semigroup { T . ( t ) ;  t € R + }  of normal unital c ~ m a p s  on A y  [24] 

Ty(t+ U )  = Ty(t) '  T~(u) 

~ m 1 1  =n 
T,(O)[Xl=mxEASP. 

It is assumed to be o-weakly continuous in t and to have a normal stationary state 

/J9. T&+) 'P9. 

In order to specify the Markov property one must prescribe how the QCK is generated 
from the semigroup. For n-vectors of the form (3.l) ,  the nth order kemel is defined 
recursively by the formula, sometimes called the quantum regression theorem [12], 

RAX, tlx, t ) = p v ( & X  07) 

R,(X,  t ) = X ' X .  

t i , (X,  t)T=x;'T,(tz- t , ) [R,- , (X,  ow, (7.1) 

The general element is obtained by polarization. The kernels of all orders define a QCK 
satisfying the properties (1)-(6) of section 5. Let there be a representation of this process 
of the form given in section 6, eventually obtained using also QCK elements of unphysical 
, time order. Thus, with the notation of section 6 there is an equality 

R(X, tl Y, u)'=(V% W V Y ,  U)> 

for all time-ordered argtkents, where the kernel has the form (7.1). We will see that 
there is a strict inclusion in (4.3) in this case. Assume the contrary. namely that for all 
{ y l ~ K - , X e A ~ , t > 0 )  it holds that 

,$=n(X, t ) y € K -  (7.2) 
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and prove a contradiction. The representation of the algebra A 9  can again be taken 
to be of the form 

K(X) =X@Q. (7.3) 

I ( 4 l m 3  t)v>lZ= l l 4 l I Z ( Y l ~ ( ~ X 3  O W >  

I ( ~ ~ ( ~ ~ ( ~ ) [ ~ I ~ Q ) Y > I ~ = I I ~ ~ ~ ~ ( w I ( ~ ~ ( ~ ) [ X ' ~ I ~ Q ) W ~ .  (7.4) 

The relation (7.2) implies that 

but (7.1) and (7.3) mean that this identity can be written in the form 

Now the Schwarz inequality says that in (7.4) 

L H S 4  141 Iz<Wl (T~P(~)IXI+~~(~)[XI@~)Y). 
But the Schwarz inequality for CP maps with T [ l ]  =I reads [24] 

T [ X ] + T [ X ]  < T [ P X ]  

with equality if and only if Tis an automorphism. If equality holds in (7.4) for all y d -  , 
i.e. for all vectors in K by our assumption, then it must hold for all {.YE&, t>O} that 

T9(~)lxl+T.(~)lxl= T&[X'Xl.  (7.5) 
This relation means that X w  T,(t)[X] is a normal represenation of A Y ,  and from the 
continuity in I follows that it must be simply a unitary equivalence X++U(t) 'XU(t) .  
We conclude that with the exception of this trivial case a contradiction has been obtained 
which shows that K-#K. One can sharpen this result as follows. 

Theorem 3. A Markovian system defines a QCK which is either singular, in which case 
the unitarity (7.5) holds, or regular. Furthermore, the QCK is ergodic'if and only if pp 
is an extrema1 invariant state for the semigroup. 

For the proof of the first part we note that if the projector P, in (f) of section 6 is non- 
zero, it holds that 

i7(T.(t)[AI)IKsK,= Y t ) + 4 A ) W ( t ) l & .  
Again one finds that (7.5) must hold, consequently that P,=Q. For a regular system 
the simplest case is that where the dynamics consists of a two-sided shift plus the 
invariant vector but has no singular part apart from the stationary state. This is equiva- 
lent to K-, = (Q), which happens precisely when there is convergence to the stationary 
state: for all X 

lim T9(r ) [X]=pY(X)Q.  
,400 

In all other cases the dynamics of the reconstructed system has a singular part in K-, , 
even though the QCK has no singular part. This singular part of the dynamics can be 
completely trivial, however, if there is just a multiplicity of stationary states. For the ' 
proof of the second statement it is evident that if p, is decomposed in a non-trivial 
way into stationary states, then there is a corresponding decomposition of the QCK. 
Conversely, if R is decomposable then there is a non-trivial projector  PEA'^ W(W)' 
such that there is a strict containment PKcK. There is then a stationary state p 6  defined 
by 

P d X )  = IIPQII-Z(filr(x)PQ>. 
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Let Kl=[n(A9)Q] .  Now p9=py implies that 

PK, =K, . 
But if this equality holds we can commute through the operators to find that 

K= [AK,] = P[AK,]. 

This is a contradiction which hows that if the QCK is decomposable, then so is p9. The 
U 

It is clear from the results of section 4 and this section that the occurrence of a shift 
in the dynamics is inconsistent with having a reservoir in thermal equilibrium with a 
finite temperature. Consequently such heat baths give rise to non-Markovian evolutions 
and non-exponential decay [26,27]. This fact can be expressed as a lack of a quantum 
white noise at a finite temperature. A reservoir will give a quantum dynamical semigroup 
without  approximation^ only if it is of a very particular type which corresponds to an 
infinite temperature [28,29]. 

conditions for extremality of py have been explored by Fngerio [XI.  

8. Complements 

It was noted already in the introduction that there is a.similarity between the theory 
presented here and that of stationary stochastic processes [5 ,6 ] .  However, there are 
characteristic differences between the two cases. In the commutative case the decomposi- 
tion into singular and regular components of the process corresponds exactly to the 
properties of the unitary operators representing the time translation; In the quantum 
case this is not so in general. The regular component can have a singular part in the 
dynamics, although there is no singular subprocess. This comes from the fact that the 
operations defining the QCK allows the outside observer to change the state of the 
system, he is not restricted to using only the intrinsic dynamics. This fact also means 
that the decomposition depends on the choice of A y ,  not just on the dynamics. If we 
start from a given canonical representation {A,  W(W), a} then K- and K-, increase 
with Ay,  but it is not clear if it is possible to tell anything in general about K,. 

In the commutative case the full statistics of the sample paths give a unique recon- 
struction, for singular and regular processes. However, this fact does not exclude that 
there may be minimal non-commutative reconstructions based on the time-ordered 
correlation kernel of a commutative regular process, and this possibility makes the 
commutative and non-commutative results consistent. Of course, in the commutative 
case not only is AY commutative, but there is an additional property of the kernel 
saying that summation over the outcomes at any instant gives the same result as not 
making any observation on the system. In the commutative case a reconstruction of 
an ergodic stationary process from the complete past of a single sample path is possible 
for almost all sample paths, both for deterministic and non-detenninistic processes [30]. 
In the quantum case there can be no real counterpart of this result. The observations 
of the system perturb the reference state, so the stationarity of the state is a weaker 
concept. Generally we need an infinite ensemble of sample paths which correspond to 
different choices of instruments in each instant. 

In the quantum case the deterministic property involves the preparation of a well- 
defined state through operations on 9’ acting in the past. This preparation procedure 
depends on the quantum state for Y’ we want to achieve. In the commutative case there 



1210 G Lindblad 

is an optimal linear predictor acting on the full past of the process which does not have 
this dependence. This is just another aspect of the difference between the order structures 
of quantum and classical measurements. A similar reformulation is necessary also in 
the case of a closed system 9. 

An interesting unsolved problem concems the role the time order may have in 
defining entropy measures of randomness. The generalization of the Kolmogorov-Sinai 
entropy introduced by Connes, et aI[31,32] does not refer to the causal time order of 
real observations on the system. Hudetz [33] attempts to create an alternative formalism 
which takes the time order into account while an earlier approach [34] which defmes 
a dynamical entropy directly from the time-ordered QCK has not been developed to a 
complete theory. Recently it has been proved that for non-commutative systems with 
a discrete time parameter a singular spectrum imples zero entropy [35]. Note that a 
singular spectrum implies that the dynamics is singular, but it is a much more restrictive 
condition. Of course, this result is consistent with the classical case. Moreover, as we 
have seen above, in this case the time order is unimportant. By analogy with the classical 
case one expects that the entropy will be zero unless there is a shift of infinite multiplicity 
in the dynamics [36]. 
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